[1]田龙妹,赵 宁,刘文奇.可购买优先权的M/G/1排队系统顾客策略分析[J].南京理工大学学报(自然科学版),2020,44(02):224-229.[doi:10.14177/j.cnki.32-1397n.2020.44.02.014]
 Tian Longmei,Zhao Ning,Liu Wenqi.Customer strategy analysis of M/G/1 queueing system with purchasable priority[J].Journal of Nanjing University of Science and Technology,2020,44(02):224-229.[doi:10.14177/j.cnki.32-1397n.2020.44.02.014]
点击复制

可购买优先权的M/G/1排队系统顾客策略分析
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
44卷
期数:
2020年02期
页码:
224-229
栏目:
出版日期:
2020-02-28

文章信息/Info

Title:
Customer strategy analysis of M/G/1 queueing system with purchasable priority
文章编号:
1005-9830(2020)02-0224-06
作者:
田龙妹赵 宁刘文奇
昆明理工大学 理学院,云南 昆明 650500
Author(s):
Tian LongmeiZhao NingLiu Wenqi
Faculty of Science,Kunming University of Science and Technology,Kunming 650500,China
关键词:
优先权 非抢占 排队系统 进队策略 收益函数
Keywords:
priority non-preemption queueing system entry strategy revenue function
分类号:
O226
DOI:
10.14177/j.cnki.32-1397n.2020.44.02.014
摘要:
为了提高随机服务系统中顾客的满意度,该文研究可购买优先权的M/G/1排队系统,通过分析顾客的个体收益函数,分别讨论了在完全可见情形和完全不可见情形下非抢占优先权排队系统的个体进队策略。完全可见情形下,顾客可以根据系统的状态,通过分析进入优先权队列的收益函数,得到完全可见情形下顾客进入优先权队列的阈值。完全不可见情形下,顾客到达系统后按照一定的概率选择进入优先权队列,通过比较顾客进入优先权队列和普通队列的平均收益函数,得到顾客进入优先权队列的最优进队策略。数值实验验证了理论结果的正确性。
Abstract:
In order to improve customers'satisfaction in stochastic service systems,this paper studies a M/G/1 queueing system with purchasable priority. By analyzing the individual revenue function of customers,the individual entry strategies are discussed respectively in completely visible and completely invisible situations for the queueing systems with nonpreemptive priority. In the completely visible situation,customers enter the priority queue selectively according to the system state. By analyzing the revenue function of the priority customers,the threshold of the priority queue in the completely visible situation is obtained. When the customer arrives at the completely invisible system,he enters the priority queue with a certain probability. The optimal entry strategy in the completely invisible situation is derived by comparing the revenue function of the customer with priority and non-priority. The theoretical results are verified by numerical experiments.

参考文献/References:

[1] Chu L,Hui L,Hung F Y. Simulation of theme park queuing system by using Arena[C]//2013 Ninth International Conference on Intelligent Information Hiding and Multimedia Signal Processing. Beijing China:IEEE,2013:18-20.
[2]Manpo L,Tao L. Modeling and simulating for queuing system with QuickPass[J]. Advanced Materials Research,2014,926-930:3088-3091.
[3]Avrachenkov K E,Vilchevsky N O,Shevlyakov G L. Priority queueing with finite buffer size and randomized push-out mechanism[J]. ACM Sigmetrics Performance Evaluation Review,2003,61(1):1-16.
[4]Iravan F,Balcoglu B. On priority queues with impatient customers[J]. Queueing Systems,2008,58(4):239-260.
[5]刘名武,杨迎春,马永开. 一类排队服务系统的最优控制策略研究[J]. 控制理论与应用,2012,29(3):323-330.
Liu Mingwu,Yang Yingchun,Ma Yongkai. Optimal control policy for a queuing service system[J]. Control Theory & Applications,2012,29(3):323-330.
[6]Hassin R,Haviv M. Equilibrium threshold strategies:The case of queues with priorities[J]. Operations Research,1997,45(6):966-973.
[7]Lillo R E. Optimal control of an M/G/1 queue with impatient priority customers[J]. Naval Research Logistics,2001,48(3):201-209.
[8]黄业文,邝神芬,杨荣领,等. 非强占有限优先权M/G/1排队系统[J]. 计算机应用,2016:1779-1783.
Huang Yewen,Kuang Shenfen,Yang Rongling,et al. M/G/1 queuing model under nonpreemptive limited-priority[J]. Computer Application,2016,36(7):1779-1783.
[9]Choi B D,Choi B K,Lee Y W. M/G/1 retrial queueing systems with two types of calls and finite capacity[J]. Queueing Systems,1995,19(1-2):215-229.
[10]Shan G. A preemptive priority retrial queue with two classes of customers and general retrial times[J]. Operations Research,2015,15(2):233-251.
[11]王小农,李建国,贺云鹏. 平面移动式立体车库车位分配的建模与仿真[J]. 南京理工大学学报,2019,43(1):54-62.
Wang Xiaonong,Li Jianguo,He Yunpeng. Modeling and simulation of parking space allocationin plane mobile stereo garage[J]. Journal of Nanjing University of Science and Technology,2019,43(1):54-62.
[12]曹雷,董强,彭伟,等. 基于排队论的导弹防御系统的效能分析[J]. 南京理工大学学报,2011,35(4):470-474.
Cao Lei,Dong Qiang,Peng Wei,et al. Effectiveness evaluation of ballistic missile defense system based on queuing theory[J]. Journal of Nanjing University of Science and Technology,2011,35(4):470-474.
[13]Xu B,Xu X L,Wang X Y. Optimal balking strategies for high-priority customers in M/G/1 queues with 2 classes of customers[J]. Applied Mathematics Computing,2016,51(1-2):623-642.
[14]Nelson R. Probability,stochastic processes,and queueing theory:The mathematics of computer performance modeling[M]. New York,US:Springer,1995.

备注/Memo

备注/Memo:
收稿日期:2019-08-20 修回日期:2020-01-28
基金项目:国家自然科学基金(71501086)
作者简介:田龙妹(1994-),女,硕士生,主要研究方向:排队论,E-mail:1156920171@qq.com; 通讯作者:赵宁(1980-),女,博士,副教授,博士生导师,主要研究方向:随机服务系统,E-mail:zhaoning@kmust.edu.cn。
引文格式:田龙妹,赵宁,刘文奇. 可购买优先权的M/G/1排队系统顾客策略分析[J]. 南京理工大学学报,2020,44(2):224-229.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2020-04-20