参考文献/References:
[1] Tudevdagva U,Battseren B,Hardt W,et al. Image processing based insulator fault detection method[EB/OL]https://www. researchgate. net/publication/329508391_Image_Processing_Based_Insulator_Fault_Detection_Method,2020-12-01.
[2]程海燕,韩璞,王迪,等. 一种电网巡检航拍图像中绝缘子定位方法[J]. 系统仿真学报,2017,29(6):1327-1336.
Cheng Haiyan,Han Pu,Wang Di,et al. Location method of insulators in power grid patrol aerial images[J]. Journal of System Simulation,2017,29(6):1327-1336.
[3]姚春羽,金立军,闫书佳. 电网巡检图像中绝缘子的识别[J]. 系统仿真学报,2012,24(9):1818-1822.
Yao Chunyu,Jin Lijun,Yan Shujia. Recognition of insulators in the image of power grid inspection[J]. Journal of System Simulation,2012,24(9):1818-1822.
[4]Redmon J,Divvala S,Girshick R,et al. You only look once:Unified,real-time object detection[EB/OL]. https://arxiv. org/pdf/1506. 02640. pdf,2020-12-01.
[5]Ren Shaoqing,He Kaiming,Girshick R,et al. Faster R-CNN:Towards real-time object detection with region proposal networks[EB/OL]. http://de. arxiv. org/pdf/1506. 01497,2020-12-01.
[6]Cai Zhaowei,Vasconcelos N. Cascade R-CNN:Delving into high quality object detection[EB/OL]. https://arxiv. org/pdf/1712. 00726. pdf,2020-12-01.
[7]Gui Zhongcheng,Li Haifeng. Automated defect detection and visualization for the robotic airport runway inspection[J]. IEEE Access,2020,8:76100-76107.
[8]Aguiar A S,Santos F N D,de Sousa A J M,et al. Visual trunk detection using transfer learning and a deep learning-based coprocessor[J]. IEEE Access,2020,8:77308-77320.
[9]He Yihui,Zhu Chenchen,Wang Jianren,et al. Bounding box regression with uncertainty for accurate object detection[EB/OL]. https://arxiv. org/pdf/1809. 08545. pdf,2020-12-01.
[10]Krizhevsky A,Sutskever I,Hinton G. ImageNet classification with deep convolutional neural networks[EB/OL]. https://www. researchgate. net/publication/267960550_ImageNet_Classification_with_Deep_Convolutional_Neural_Networks,2020-12-01.
[11]LeCun Y,Boser B,Denker J S,et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation,1989,1(4):541-551.
[12]Redmon J,Farhadi A. YOLOv3:An incremental improvement[EB/OL]. https://arxiv. org/pdf/1804. 02767. pdf,2020-12-01.
[13]Yang Zhenheng,Mahajan D,Ghadiyaram D,et al. Activity driven weakly supervised object detection[EB/OL]. https://ieeexplore. ieee. org/document/8953417,2020-12-01.
[14]Xie Shaoan,Zheng Zibin,Chen Liang,et al. Learning semantic representations for unsupervised domain adaptation[EB/OL]. http://proceedings. mlr. press/v80/xie18c/xie18c. pdf,2020-12-01.
[15]Caron M,Bojanowski P,Joulin A,et al. Deep clustering for unsupervised learning of visual features[EB/OL]. https://arxiv. org/pdf/1807. 05520. pdf,2020-12-01.
[16]Wang Xudong,Cai Zhaowei,Gao Dashan,et al. Towards universal object detection by domain attention[EB/OL]. https://arxiv. org/pdf/1904. 04402. pdf,2020-12-01.
[17]Ma Xinhong,Zhang Tianzhu,Xu Changsheng. GCAN:Graph convolutional adversarial network for unsupervised domain adaptation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Long Beach,CA,USA:IEEE,2019:8266-8276.
[18]Kim T,Jeong M,Kim S,et al. Diversify and match:A domain adaptive representation learning paradigm for object detection[EB/OL]. https://arxiv. org/pdf/1905. 05396v1. pdf,2020-12-01.
[19]Goodfellow Ian J,Pouget-Abadie J,Mirza M,et al. Generative adversarial networks[EB/OL]. https://arxiv. org/pdf/1406. 2661. pdf,2020-12-01.
[20]陈耀,宋晓宁,於东军. 迭代化代价函数及超参数可变的生成对抗网络[J]. 南京理工大学学报,2019,43(1):35-40.
Chen Yao,Song Xiaoning,Yu Dongjun. Iterative cost function and variable parameter generative adversarial networks[J]. Journal of Nanjing University of Science and Technology,2019,43(1):35-40.
[21]Redmon J,Farhadi A. YOLO9000:Better,faster,stronger[EB/OL]. https://arxiv. org/pdf/1612. 08242. pdf,2020-12-01.
[22]Chen Yuhua,Li Wen,Sakaridis C,et al. Domain adaptive faster R-CNN for object detection in the wild[EB/OL]. https://arxiv. org/pdf/1803. 03243. pdf,2020-12-01.