[1]窦如林,方旭明,柳亚男.基于信息准则的多跳无线定位方法[J].南京理工大学学报(自然科学版),2020,44(06):676-682.[doi:10.14177/j.cnki.32-1397n.2020.44.06.006]
 Dou Rulin,Fang Xuming,Liu Yanan.Information criterion-based wireless multi-hoplocalization algorithm[J].Journal of Nanjing University of Science and Technology,2020,44(06):676-682.[doi:10.14177/j.cnki.32-1397n.2020.44.06.006]
点击复制

基于信息准则的多跳无线定位方法()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
44卷
期数:
2020年06期
页码:
676-682
栏目:
出版日期:
2020-12-31

文章信息/Info

Title:
Information criterion-based wireless multi-hoplocalization algorithm
文章编号:
1005-9830(2020)06-0676-07
作者:
窦如林方旭明柳亚男
金陵科技学院 软件工程学院,江苏 南京 211169
Author(s):
Dou RulinFang XumingLiu Yanan
College of Software Engineering,Jinling Institute of Technology,Nanjing 211169,China
关键词:
多跳定位 信息准则 赤池信息量准则 不规则网络
Keywords:
multi hop localization information criterion Akaike’s information criterion irregular network
分类号:
TP393
DOI:
10.14177/j.cnki.32-1397n.2020.44.06.006
摘要:
多跳定位算法大多假定节点分布的环境无障碍物,在实际环境中,节点分布的场景通常较为复杂,网络拓扑常呈现不规则,造成用跳数估算距离发生严重偏差。该文提出了一种基于信息准则的多跳无线定位方法。该方法在信息准则的帮助下构建锚节点间最优的映射模型,并以该映射模型来预测未知节点到锚节点间的估计距离。通过理论分析和实验验证,该文提出的算法在不规则网络中具有定位精度高、计算复杂度低和定位速度快的优点,有较广泛的使用价值。
Abstract:
Most previous localization algorithms assume that the network is uniform and has not holes or obstacles. Networks may be irregular with obstacles in practice,which makes the shortest path deviate the geographical distances. In this paper,an information criterion-based wireless multi-hop localization algorithm is proposed. With the help of information criterion,this algorithm constructs the optimal mapping model between anchor nodes and uses the mapping model to predict the estimated distance between the unknown nodes and the anchor nodes. The theoretical analysis and experimental results show that the proposed algorithm has not only high localization accuracy but also low computational complexity and fast running-speed in irregular networks,having a wide range of use-value.

参考文献/References:

[1] Gao Demin,Zhang Shuo,Zhang Fuquan,et al. RowBee:A routing protocol based on cross-technology communication for energy-harvesting wireless sensor networks[J]. IEEE Access,2019,7:40663-40673.
[2]李华峰,钱焕延,高德民,等. 基于模板理论的无线传感器网络路由协议[J]. 南京理工大学学报,2013,37(3):331-336.
Li Huafeng,Qian Huanyan,Gao Demin,et al. Routing protocol for wireless sensor networks based on schema theory[J]. Journal of Nanjing University of Science and Technology,2013,37(3):331-336.
[3]Gao Demin,Sun Quan,Bin Hu,et al. A framework for agricultura pest and disease monitoring based on internet-of-things and unmanned aerial vehicles[J]. Sensors,2020,20(5):1487-1504.
[4]郑久虎,钱焕延. 基于核Tikhonov规则化的多跳非测距定位方法[J]. 南京理工大学学报,2016,40(4):455-460.
Zheng Jiuhu,Qian Huanyan. Multihop range-free localization method based on kernel Tikhonov regularization[J]. Journal of Nanjing University of Science and Technology,2016,40(4):455-460.
[5]Yan Xiaoyong,Cao Jiannong,Sun Lijuan,et al. Accurate analytical-based multi-hop localization with low energy consumption for irregular networks[J]. IEEE Transactions on Vehicular Technology,2020,69(2):2021-2033.
[6]Du Bowen,Peng Hao,Wang Senzhang,et al. Deep irregular convolutional residual LSTM for urban traffic passenger flows prediction[J]. IEEE Transactions Intelligent Transportation Systems,2020,21(3):972-985.
[7]杨忠,严筱永. 传感网节点定位技术研究[M]. 北京:科学出版社,2018.
[8]Shang Y,Shi H C,Ahmed A A. Performance study of localization methods for ad-hoc sensor networks[C]//Proceedings of the IEEE International Conference Mobile Ad Hoc Sensor Systems. Fort Lauderdale,FL:IEEE,2004:184-193.
[9]Gui Linqing,Val T,Wei A,et al. Improvement of range-free localization technology by a novel DV-hop protocol in wireless sensor networks[J]. Ad Hoc Networks,2015,24:55-73.
[10]Yan Xiaoyong,Sun Liguan,Sun Zhixin,et al. Improved hop-based localisation algorithm for irregular networks[J]. IET Communications,2019,13(5):520-527.
[11]Lee J,Choi B,Kim E. Novel range-free localization based on multidimensional support vector regression trained in the primal space[J]. IEEE Transactions on Neural Networks and Learning Systems,2013,24(7):1099-1113.
[12]周志华. 机器学习[M]. 北京:清华大学出版社,2016.
[13]孟生旺. 回归模型[M]. 北京:中国人民大学出版社,2015.
[14]Yan Xiaoyong,Yang Zhong,Song Aiguo,et al. A novel multihop range-free localization based on kernel learning approach for the internet of things[J]. Wireless Personal Communications,2016,87(1):269-292.

备注/Memo

备注/Memo:
收稿日期:2020-06-02 修回日期:2020-09-08
基金项目:国家自然科学基金(61902163)
作者简介:窦如林(1979-),男,高级实验师,主要研究方向:无线网络、大数据处理,E-mail:drl@jit.edu.cn。
引文格式:窦如林,方旭明,柳亚男. 基于信息准则的多跳无线定位方法[J]. 南京理工大学学报,2020,44(6):676-682.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2020-12-30