参考文献/References:
[1] 吴春芳. 动力电池SOC估算综述[J]. 电源技术,2017,41(12):1795-1798.
Wu Chunfang. Review of state of charge estimation for power battery[J]. Chinese Journal of Power Sources,2017,41(12):1795-1798.
[2]刘大同,周建宝,郭力萌,等. 锂离子电池健康评估和寿命预测综述[J]. 仪器仪表学报,2015,36(1):1-16.
Liu Datong,Zhou Jianbao,Guo Limeng,et al. Survey on lithium-ion battery health assessment and cycle life estimation[J]. Chinese Journal of Scientific Instrument,2015,36(1):1-16.
[3]刘皓,胡明昕,朱一亨,等. 基于遗传算法和支持向量回归的锂电池健康状态预测[J]. 南京理工大学学报,2018,42(3):329-334,351.
Liu Hao,Hu Mingxin,Zhu Yiheng,et al. Prediction for state of health of lithium-ion batteries by genetic algorithm and support vector regression[J]. Journal of Nanjing University of Science and Technology,2018,42(3):329-334,351.
[4]陈建新,候建明,王鑫,等. 基于局部信息融合及支持向量回归集成的锂电池健康状态预测[J]. 南京理工大学学报,2018,42(1):48-55.
Chen Jianxin,Hou Jianming,Wang Xin,et al. Prediction for state of health of lithium-ion batteries by local information fusion with ensemble support vector regression[J]. Journal of Nanjing University of Science and Technology,2018,42(1):48-55.
[5]方磊,陈勇,赵理,等. 基于模糊控制的扩展卡尔曼滤波SOC估计研究[J]. 系统仿真学报,2018,30(1):325-331.
Fang Lei,Chen Yong,Zhao Li,et al. SOC estimation with extended Kalman filter based on fuzzy control[J]. Journal of System Simulation,2018,30(1):325-331.
[6]邓凯锋,王耀南,刘东奇.基于小波变换的卡尔曼滤波动力电池SOC估算[J]. 控制工程,2015,22(3):398-403.
Deng Kaifeng,Wang Yaonan,Liu Dongqi. Kalman filter for HEV’s battery SOC estimation based on wavelet transform[J]. Control Engineering of China,2015,22(3):398-403.
[7]Xiong Rui,He Hongwen,Sun Fengchun,et al. Evaluation on state of charge estimation of batteries with adaptive extended Kalman filter by experiment approach[J]. IEEE Transactions on Vehicular Technology,2013,62(1):108-117.
[8]Xing Yinjiao,He Wei,Michael P,et al. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures[J]. Applied Energy,2014,113(1):106-115.
[9]Xia Bizhong,Zhang Zheng,Lao Zizhou,et al. Strong tracking of a H-infinity filter in lithium-ion battery state of charge estimation[J]. Energies,2018,11(6):1481.
[10]程泽,杨磊,孙幸勉. 基于自适应平方根无迹卡尔曼滤波算法的锂离子电池SOC和SOH估计[J]. 中国电机工程学报,2018,38(8):2384-2393,2548.
Cheng Ze,Yang Lei,Sun Xingmian. State of charge and state of health estimation of Li-ion batteries based on adaptive square-root unscented Kalman filters[J]. Proceedings of the CSEE,2018,38(8):2384-2393,2548.
[11]Bizeray A M,Zhao S,Duncan S R,et al. Lithium-ion battery thermal-electrochemical model-based state estimation using orthogonal collocation and a modified extended Kalman filter[J]. Journal of Power Sources,2015,296:400-412.
[12]Wei Jingwen,Dong Guangzhong,Chen Zonghai. Model-based fault diagnosis of lithium-ion battery using strong tracking extended Kalman filter[J]. Energy Procedia,2019,158:2500-2505.
[13]Sage A P,Husa G W. Adaptive filtering with unknown prior statistic[C]//Proceedings of Joint Automatic Control Conference. Boulder,USA:American Society of Mechanical Engineers,1969:760-769.
相似文献/References:
[1]徐茂格,宋耀良,刘力维.基于修正扩展卡尔曼滤波和粒子滤波的混沌信号检测与跟踪[J].南京理工大学学报(自然科学版),2007,(04):514.
XU Mao-ge,SONG Yao-liang,LIU Li-wei.Chaotic Signal Detection and Track Based on Modified Extended Kalman Filter and Particle Filtering[J].Journal of Nanjing University of Science and Technology,2007,(06):514.
[2]张 文,孙瑞胜.EKF与UKF的性能比较及应用[J].南京理工大学学报(自然科学版),2015,39(05):614.
Zhang Wen,Sun Ruisheng.Research on performance comparison of EKF and UKF and
their application[J].Journal of Nanjing University of Science and Technology,2015,39(06):614.