[1]常玲玲,刘 跃,李会荣,等.亲水涂层铝箔水冷辊温度场数值模拟研究[J].南京理工大学学报(自然科学版),2020,44(06):733-738.[doi:10.14177/j.cnki.32-1397n.2020.44.06.013]
 Chang Lingling,Liu Yue,Li Huirong,et al.Simulation research of temperature field of water coolingroller for hydrophilic coated aluminium foil[J].Journal of Nanjing University of Science and Technology,2020,44(06):733-738.[doi:10.14177/j.cnki.32-1397n.2020.44.06.013]
点击复制

亲水涂层铝箔水冷辊温度场数值模拟研究()
分享到:

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

卷:
44卷
期数:
2020年06期
页码:
733-738
栏目:
出版日期:
2020-12-31

文章信息/Info

Title:
Simulation research of temperature field of water coolingroller for hydrophilic coated aluminium foil
文章编号:
1005-9830(2020)06-0733-06
作者:
常玲玲1刘 跃1李会荣1管小荣2
1.陕西国防工业职业技术学院 计算机学院,陕西 西安 710300; 2.南京理工大学 机械工程学院,江苏 南京 210094
Author(s):
Chang Lingling1Liu Yue1Li Huirong1Guan Xiaorong2
1.School of Computer Science,Shaanxi Institute of Technology,Xi’an 710300,China; 2.School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
亲水涂层铝箔 水冷辊 温度场 空气隔层 冷却速度
Keywords:
hydrophilic coated aluminium foil water cooling rollers temperature field air layer cooling speed
分类号:
TG162.6; O368
DOI:
10.14177/j.cnki.32-1397n.2020.44.06.013
摘要:
为解决亲水铝箔生产时由于冷却速度过快产生的起皱问题,采用添加空气隔层的方法减缓冷却速度。使用Fluent软件对不同水冷辊结构时的铝箔冷却温度场进行了数值计算。通过比较流场温度分布及具体量化值,探讨了设置空气隔层的可行性及空气隔层厚度的影响规律,并在此基础上分析了铝箔冷却情况随敏感参数的变化规律。模拟实验结果表明:添加空气隔层可有效改善铝箔温度下降速度过快的问题; 随着空气隔层厚度的增加,温度变化梯度降低,空气隔层厚度设置为4~6 cm可满足铝箔冷却工艺要求; 铝箔冷却温度变化与水冷辊直径、包角呈线性关系,与旋转速度呈反比例关系。
Abstract:
To solve the crease problem in the production of the hydrophilic aluminum foil caused by fast cooling process,the air layer structure is proposed to slow down the cooling speed. The Fluent software is employed to numerically calculate the temperature fields of different roller structures. The effects of the new structure as well as the reasonable air thickness are researched through the comparison of temperature contours and quantitative data. The varying law of the foil temperature with roller parameters is also studied. The numerical simulations show that the cooling speed of foil temperature slows down owing to the air layer; as the air thickness increasing,the temperature gradient tends smaller,and the air layer with thickness of 4~6 cm is advisable to satisfy the foil cooling requirements; the foil temperature is proportional to roller diameter as well as wrap angle,and is inversely proportional to the rotation speed.

参考文献/References:

[1] 孟维柱,田旭. 亲水涂层铝箔生产线[J]. 机械设计与制造,2000(5):62-63.
Meng Weizhu,Tian Xu. Technology and equipment of hydrophilic aluminum foil coating[J]. Machinery Design and Manufacture,2000(5):62-63.
[2]杨楠. 辊冷技术及其冷却能力计算[J]. 工业炉,2017(5):53-55.
Yan Nan. Roller-quench technology and its calculation method of cooling capacity[J]. Industrial Furnace,2017(5):53-55.
[3]王少飞,屈子路,窦爱民,等. 多辊轧机在冷轧高强钢生产中的应用[J]. 中国冶金,2019,29(6):81-84.
Wang Shaofei,Qu Zilu,Dou Aimin,et al. Application of muti-roll mill in cold rolled high strength steel production[J]. China Metallurgy,2019,29(6):81-84.
[4]王宇新,李晓杰,王小红,等. 复合轧辊的爆炸焊接技术研制[J]. 南京理工大学学报,2019,43(5):556-562.
Wang Yuxin,Li Xiaojie,Wang Xiaohong,et al. Study on manufacturing of compound roller by using of explosive welding technology[J]. Journal of Nanjing University of Science and Technology,2019,43(5):556-562.
[5]董永刚,宋剑锋,朱衡,等. 冷轧支承辊辊套内外表面应力分布及其影响因素研究[J]. 塑性工程学报,2018,25(3):274-281.
Dong Yonggang,Song Jianfeng,Zhu Heng,et al. Influence factors and distribution of stress on inner and outer surfaces of roll sleeve of back-up roll for cold mill[J]. Journal of Plasticity Engineering,2018,25(3):274-281.
[6]Pan Cunhai,Luo Sa. Effects of cooling water velocity on temperature field of hot billet conveyor roller[C]//2016 5th International Conference on Energy and Environmental Protection(ICEEP 2016). Shenzhen,China:ICEEP,2016.
[7]袁建波,兰箭. 端面无支撑芯辊模态及其动力响应有限元分析[J]. 锻压技术,2017,42(5):152-158.
Yuan Jianbo,Lan Jian. Finite element analysis on modal and dynamic response of unsupported mandrel on end face[J]. Forging and Stamping Technology,2017,42(5):152-158.
[8]王兴东,黄毫军,李友荣,等. 沉没辊装置液固耦合数值模拟及振动实验[J]. 工程科学学报,2016,38(12):1778-1783.
Wang Xingdong,Huang Haojun,Li Yourong,et al. Numerical simulation and vibration test on the liquid-solid coupling system of a sink roll device[J]. Chinese Journal of Engineering,2016,38(12):1778-1783.
[9]梅瑞斌,杜永霞,蔡般,等. 不同加热条件下AZ31镁合金带材轧制过程的数值模拟[J]. 热加工工艺,2017,46(1):113-116.
Mei Ruibin,Du Yongxia,Cai Ban,et al. Numerical simulation of rolling process of AZ31 Mg alloy strip under different heating conditions[J]. Hot Working Technology,2017,46(1):113-116.
[10]李会荣,马书元. LT1350图层线水冷辊结构优化设计[J]. 机械工程与自动化,2016(1):129,131.
Li Huirong,Ma Shuyuan. LT1350 coated wire water cooling roller structure optimization design[J]. Mechanical Engineering and Automation,2016(1):129,131.
[11]陶文铨. 数值传热学[M]. 第2版. 西安:西安交通大学出版社,2001.
[12]Versteeg H K,Malalasekera W. An introduction to computational fluid dynamics:The finite volume method[EB/OL]. https://www. researchgate. net/profile/W_Malalasekera/publication/44491110_An_introduction_to_computational_fluid_dynamics_the_finite_volume_method_H_K_Versteeg_and_W_Malalasekera/links/0deec5190993e535a2000000/An-introduction-to-computational-fluid-dynamics-the-finite-volume-method-H-K-Versteeg-and-W-Malalasekera. pdf,2020-11-22.
[13]肖亚庆. 铝加工技术实用手册[M]. 北京:冶金工业出版社,2005.

备注/Memo

备注/Memo:
收稿日期:2020-01-09 修回日期:2020-09-28
基金项目:陕西省教育厅科学研究计划项目(20JK0508)
作者简介:常玲玲(1990-),女,助教,主要研究方向:计算机科学技术与应用,E-mail:1172053631@qq.com; 通讯作者:刘跃(1987-),男,博士,讲师,主要研究方向:计算流体力学,E-mail:lynefo@126.com。
引文格式:常玲玲,刘跃,李会荣,等. 亲水涂层铝箔水冷辊温度场数值模拟研究[J]. 南京理工大学学报,2020,44(6):733-738.
投稿网址:http://zrxuebao.njust.edu.cn
更新日期/Last Update: 2020-12-30